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We propose a self-consistent Ornstein�Zernike approximation for studying the
Edwards�Anderson spin glass model. By performing two Legendre transforms
in replica space, we introduce a Gibbs free energy depending on both the
magnetizations and the overlap order parameters. The correlation functions and
the thermodynamics are then obtained from the solution of a set of coupled par-
tial differential equations. The approximation becomes exact in the limit of
infinite dimension and it provides a potential route for studying the stability of
the high-temperature phase against replica-symmetry breaking fluctuations in
finite dimensions. As a first step, we present the predictions for the freezing tem-
perature Tf and for the zero-field thermodynamic properties and correlation
length above Tf as a function of dimensionality.

KEY WORDS: Disordered systems; spin glasses; Ornstein�Zernike equa-
tions.

I. INTRODUCTION

This paper is the third one in a series devoted to the application of the self-
consistent Ornstein�Zernike approximation (SCOZA) to classical spin
systems with quenched disorder. The SCOZA has been formulated some
time ago as a theory for simple fluid and lattice gas systems.(1) It is based
on an Ornstein�Zernike (OZ) approximation for the direct correlation
function c(r) that, by construction, enforces consistency between the dif-
ferent routes that give the thermodynamic potentials in terms of the pair
correlation functions. In the language of magnetic systems, this means that
the same Gibbs free energy G(m, ;) is obtained whether one integrates the
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susceptibility / with respect to the magnetization m or the internal energy
U with respect to the inverse temperature ;=1�kBT. In the case of the spin
1�2 Ising model with ferromagnetic nearest-neighbor interactions, this self-
consistency requirement is embodied in a diffusive-like partial differential
equation with m and ; as independent variables. This equation could be
solved only recently for the various three-dimensional lattices, (2) showing
that the SCOZA predicts all thermodynamic and structural properties with
great accuracy, even in the close vicinity of the critical point.(3) As the
spatial dimension d goes to infinity, the SCOZA becomes exact and iden-
tifies with mean-field theory. This approach can thus be viewed as an
approximate but non-perturbative way of taking into account thermal fluc-
tuations in finite dimensions. Although this is an OZ theory which does not
handle correctly long-range critical fluctuations, the asymptotic critical
exponents are non-classical. For the 3-d Ising model, they have the spheri-
cal-model values in a very narrow region above the critical temperature,
but are much accurate along the magnetization curve.(3, 4)

In the preceding papers of this series, (5, 6) we used the replica method
to generalize this approach to disordered spin systems. This allowed us to
obtain an accurate description of the dependence of the critical temperature
on dilution in the 3-d site-diluted Ising model(5) and to study the influence
of the random-field distribution on the phase diagram of the random-field
Ising model (RFIM) for d>4.(6) In both cases, possible replica-symmetry
breaking (RSB) effects were ignored. In this work, we present a first
application of the SCOZA to the Edwards�Anderson (EA) Ising spin glass
model(7) whose low-temperature properties remain a subject of controver-
sies after nearly twenty-five years of intense activity. Whereas Parisi's
mean-field theory(8) is generally accepted as the exact solution of the
infinite-ranged Sherrington�Kirkpatrick (SK) model, (9, 10) there is yet no
consensus on whether or not the RSB scenario associated with the
appearance of multiple equilibrium states at low temperature survives in
realistic, short-ranged, finite-dimensional models (for recent reviews of this
problem, see refs. 11, 12). A relevant open question is the existence of a
phase transition in presence of an external magnetic field. Whereas the
scaling approach based on the droplet model(13�15) predicts that a non-zero
magnetic field destroys the spin glass phase, the mean-field picture suggests
that there is still an Almeida�Thouless (AT) line(16) separating the spin
glass phase from the paramagnetic phase.

Although the SCOZA is based on a simple OZ ansatz for the correla-
tion functions (so that the critical exponent ' is zero, a rather crude
approximation for the 3-d EA model according to numerical simula-
tions), (17) it may be sufficiently accurate to give useful indications about the
stability of the high-temperature phase against RSB fluctuations. It is worth
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stressing that the SCOZA becomes exact when d � �, so that one recovers
in this limit the behavior of the SK model. Our purpose is thus to use this
non-perturbative approach to generalize the AT analysis to finite dimen-
sions, i.e., to determine the locus of singularities of the spin glass suscep-
tibility /SG by working from the replica-symmetric region. This amounts to
study the eigenvalues of the wave-vector-dependent inverse susceptibility
matrix at k=0. As the inverse susceptibility matrix is just the matrix of
direct correlation functions generated by a Legendre transformed Gibbs
free energy, our program is the following: derive the appropriate OZ equa-
tions, assume an OZ form for the direct correlation functions (which
means, in the present case, truncate them at nearest-neighbor separation),
invert the OZ equations, and use all existing self-consistency requirements
and exact relations (for instance, the values of the pair distribution func-
tions at zero separation) to derive a set of partial differential equations
whose solution will provide the phase boundaries in zero field and the AT
lines. (Note that the SCOZA can also be combined with the Parisi RSB
scheme; the main obstacle is the tractability of the calculation that requires
inverting ultrametric matrices as done in ref. 12.) This program, however,
is not fully completed in the present paper which is only devoted to the
calculation of the freezing temperature Tf and of the thermodynamic
properties at and above Tf as a function of dimensionality. The stability
analysis, which requires a more difficult numerical computation, will be
presented later. The paper is organized as follows. In Section 2, we intro-
duce the model and we perform the double Legendre transform that allows
one to introduce the direct correlation functions. The OZ equations in
replica space are then solved in the case of replica symmetry. In Section 3,
we define an OZ approximation for the direct correlation functions which,
at the lowest level, coincides with standard mean-field theory. We also
derive the exact core conditions and self-consistency relations. In Section 4,
this formalism is used to derive the SCOZA equations in the case of zero
field. Numerical results are presented in Section 5.

II. THE REPLICA-SYMMETRIC ORNSTEIN�ZERNIKE
EQUATIONS

We consider an EA spin-glass Hamiltonian for N spins _i=\1 on a
d-dimensional hypercubic lattice

H=& :
(ij)

Jij_i_j&H :
i

_ i (1)
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where the first sum runs over all nearest neighbor pairs and the couplings
Jij are independent Gaussian variables with mean J0 and variance J 2; H is
an external magnetic field.

Introducing as usual n replicas _a
i (a=1,..., n) of the original spin

variables and performing the average over disorder, one finds that the
quenched free energy is given by

F=&
1
;

lim
n � 0

1
n

[exp(&;Fn)&1]=&
1
;

lim
n � 0

1
n

[Tr exp(&;Hn)&1] (2)

where Hn is a temperature-dependent effective Hamiltonian

Hn=& :
(ij) _J0 :

a

_a
i _a

j +
;J2

2
:
a, b

_a
i _b

i _a
j _b

j &&H :
i

:
a

_a
i (3)

and the trace in Eq. (2) is taken over the _a
i 's. It is also useful to introduce

a fictitious field 2 which couples to the quantity &1�2 � i �a, b _a
i _b

i . When
2>0, kBT2 can be interpreted as the variance of a Gaussian random field
but, in the present work, we are mainly interested in the limit 2=0 (see
ref. 18 for a study of the SK model in the presence of a Gaussian random
field). We treat H and 2 as sources that we extend to site- and replica-
dependent values H a

i and 2ab
i is order to generate the correlation functions.

We thus consider the more general Hamiltonian

Hn=& :
(ij) _J0 :

a

_a
i _a

j +;J2 :
a<b

_a
i _b

i _a
j _b

j &&:
i _:

a

H a
i _a

i + :
a<b

2ab
i _a

i _b
i &
(4)

where we have restricted 2ab
i to a<b with the condition 2ab

i =2ba
i and

omitted the constant contribution &nN[c;J2�4+2�2] of the diagonal
terms (c is the coordination number of the lattice). The averaged
magnetization ma

i and overlap parameters qab
i are given by

ma
i =&

�Fn

�H a
i

=(_a
i )n (5)

and

qab
i =&

�Fn

�2ab
i

=(_a
i _b

i ) n , a<b, (6)

respectively, where ( } } } ) n denotes the replica thermal average. At the end,
we shall take the limit H a

i � H and 2ab
i � 2. Then, in the limit n � 0, one

has ma
i � m, and, if replica symmetry holds, qab

i � q (which is the also the
usual Edwards�Anderson order parameter qEA when 2=0). Accordingly,
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one has �(F�N )��H=&m and �(F�N )��2= 1
2 (q&1) (the &1�2 comes

from the constant contribution omitted in Eq. (4)).
The second partial derivatives with respect to H a

i and 2ab
i define the

matrix of (connected) correlation functions in replica space

Gab
ij =&

�2F� n
�H� a

i �H� b
j

=(_a
i _b

j ) n&(_a
i ) n (_b

j ) n (7)

Gab, cd
ij =&

�2F� n
�2� ab

i �2� cd
j

=(_a
i _b

i _c
j _d

j ) n&(_a
i _b

i ) n (_c
j _d

j ) n (a<b, c<d ) (8)

Ga, bc
ij =&

�2F� n
�H� a

i �2� bc
j

=(_a
i _b

j _c
j ) n&(_a

i ) n (_b
j _c

j ) n (b<c) (9)

and similarly for Gab, c
ij (F� n=;Fn , H� =;H, and 2� =;2).

We now perform a double Legendre transform that takes the fields H a
i

and 2ab
ij into ma

i and qab
i , respectively. This defines the Gibbs free energy

Gn=Fn+:
i

:
a

H a
i ma

i +:
i

:
a<b

2ab
i qab

i (10)

which satisfies H a
i =�Gn��ma

i and 2ab
i =�Gn ��qab

i . Accordingly, in the limit
n � 0, ma

i � m, and qab
i � q, the Gibbs free energy G(m, q, ;) satisfies

�(G�N )
�m

=H (11)

and

�(G�N )
�q

=&
1
2

2 (12)

Gn is the generating functional of the direct correlation functions (or proper
vertices in field-theoretical language)

C ab
ij =

�2G� n
�ma

i �mb
j

(13)

C ab, cd
ij =

�2G� n
�qab

i �qcd
j

(a<b, c<d ) (14)

C a, bc
ij =

�2G� n
�ma

i �qbc
j

(b<c) (15)

and similarly for C ab, c
ij (G� n=;Gn).
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The matrix C
��

is the inverse of the matrix G
��

and this defines a set of
Ornstein�Zernike equations. In the limit of uniform fields, one has in
Fourier space

:
c

C� ac(k) G� cb(k)+ :
c<d

C� a, cd (k) G� cd, b(k)=$a, b (16)

and

:
e

C� ab, e(k) G� e, cd (k)+ :
e< f

C� ab, ef (k) G� ef, cd (k)=$a, c $b, d (17)

These equations are the starting point of our study and the first task
is to solve them, i.e., to express the propagators G� 's in terms of the direct
correlations functions C� 's (or, conversely, the C� 's in terms of the G� 's) for
general values of n and then take the limit n � 0. This is easy when replica-
symmetry holds since G�

��
and C�

��
have the same structure as the Hessian or

stability matrix of the SK model which has been analyzed by de Almeida
and Thouless(16) (on the other hand, the problem becomes highly non-tri-
vial when continuous RSB a� la Parisi occurs, since one has to cope with
the inversion of ultrametric matrices, see, e.g., ref. 12). There are seven dif-
ferent types of matrix elements, G� aa, G� ab, G� ab, ab, G� ab, ac, G� ab, cd,
G� a, ab=G� ab, a, G� c, ab=G� ab, c (resp., C� aa, C� ab,... etc.) and the matrices of
order n(n+1)�2 can be easily block-diagonalized. There are three sub-
spaces of dimensions 2, 2(n&1) and n(n&3)�2 which, following the
standard terminology, (12, 19) we call respectively L (for longitudinal), A (for
anomalous) and R (for replicon). The block-diagonalized matrices then
contain a single 2_2 L-block, n&1 identical 2_2 A-blocks, and n(n&3)�2
identical R-eigenvalues. In the new representation, the Ornstein�Zernike
equations, hereafter called the replica-symmetric Ornstein�Zernike (RSOZ)
equations, break up into three sets of equations. The first set reads

G�
��

L(k)=C�
��

L(k)&1 (18)

with

C�
��

L=\ C� aa+(n&1) C� ab

2C� a, ab+(n&2) C� a, bc

(n&1) C� a, ab+
(n&1)(n&2)

2
C� a, bc

C� ab, ab+2(n&2) C� ab, ac+
(n&2)(n&3)

2
C� ab, cd+

(19)
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Similar expressions hold for the elements of G�
��

L. The second set reads

G�
��

A(k)=C�
��

A(k)&1 (20)

with

C�
��

A=\
C� aa&C� ab

n&2
n&1

(C� a, ab&C� a, bc)

(n&1)(C� a, ab&C� a, bc)

C� ab, ab+(n&4) C� ab, ac&(n&3) C� ab, cd+
(21)

and similar expressions for G�
��

A. The last equation corresponds to the
replicon sector,

G� R(k)=C� R(k)&1 (22)

with

C� R=C� ab, ab&2C� ab, ac+C� ab, cd (23)

and a similar expression for G� R.
In the limit n � 0, Eq. (19) readily yields

C� L
11=C� aa&C� ab (24a)

C� L
12=C� a, bc&C� a, ab (24b)

C� L
21=2(C� a, ab&C� a, bc)=&2C� L

12 (24c)

C� L
22=C� ab, ab&4C� ab, ac+3C� ab, cd (24d)

and similarly for the four elements of the matrix G�
��

L. They can be deduced
from the elements of C�

��

L by using Eq. (18) (for simplicity, in these expres-
sions and in the following, we keep the same notations for G� L, C� L, G� aa,
etc., although the limit n � 0 has been taken).

When n � 0, we see from Eqs. (19) and (21) that C�
��

A � C�
��

L (resp.,
G�
��

A � G�
��

L). But the difference C�
��

A&C�
��

L is of order n, which yields

lim
n � 0

1
n

(C�
��

L&C�
��

A)=\ C� ab

2C� a, bc&C� a, ab

& 1
2C� a, bc

C� ab, ac& 3
2C� ab, cd+

=(G�
��

L)&1 } \ &G� ab

&2G� a, bc+G� a, ab

1
2G� a, bc

&G� ab, ac+ 3
2G� ab, cd+ } (G�

��

L)&1

(25)
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This set of equations allows to express all the correlation functions C� 's
in terms of the G� 's (and conversely) in the limit n � 0. The values of the
direct correlation functions at k=0 in the longitudinal sector are directly
related to the various susceptibilities. One has

�2(G� �N )
�m2 =

�H�
�m

=C� L
11(k=0) (26a)

�2(G� �N )
�m �q

=
�H�
�q

=&
1
2

�2�
�m

=C� L
12(k=0) (26b)

�2(G� �N )
�q2 =&

1
2

�2�
�q

=&
1
2

C� L
22(k=0) (26c)

In particular, when H=2=0, C� L
11(k=0)=;/&1, where / is the magnetic

susceptibility whose divergence signals the occurrence of the paramagnetic
to ferromagnetic transition. More generally, in the approximate theory that
is discussed below, the vanishing of the determinant of C

��

L defines spinodal
lines. On the other hand, the stability limit of the replica-symmetric solu-
tion (i.e., the AT lines) is signaled by the vanishing of C� R(k=0). In zero
fields, one has

C� R(k=0)=
1

G� R(k=0)
=/&1

SG (27)

where /SG=1�N � i, j [((_i_j) T&(_ i) T (_j)T)2]av , is the spin-glass
susceptibility.(10)

It is also useful to note the consequences of the symmetry properties
of the Hamiltonian Hn described by Eq. (4) for the correlation functions.
Hn is invariant under the global transformation ([_a

i ], [H a
i ]) � ([&_a

i ],
[&H a

i ]) for all spins in all replicas while leaving [2ab
i ] unchanged. In con-

sequence, averaged quantities involving an odd number of spins are zero
when H=m=0 (even when 2{0). In particular, Ga, ab(r)=Ga, bc(r)=
Ca, ab(r)=Ca, bc(r)=0. This implies that GL

12(r)=GL
21(r)=C L

21(r)=
CL

21(r)=0 and the RSOZ equations involving the 2-replicas and 4-replicas
correlation functions, Eqs. (16) and (17), decouple. Hn is also invariant in
the global transformation ([_a

i ], [H a
i ], [2ab

i ]) � ([&_a
i ], [&H a

i ], [&2ab
i ])

for all spins in a single replica a. This implies that Gab(r)=Gab, ac(r)=
Gab, cd (r)=Cab(r)=C ab, ac(r)=C ab, cd (r)=0 in the paramagnetic phase
when H=2=0. Finally, when J0=0, Hn is also invariant in the local
transformation ([_a

i ], [H a
i ]) � ([&_a

i ], [&H a
i ]) for a single spin i in all

replicas while leaving [2ab
i ] unchanged. This implies that m=0 and that

Gaa(r) and Gab(r) are local when H=0 (even when 2{0). More precisely,
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one has Gaa(r)=$r, 0 and Gab(r)=q$r, 0 . This implies that /=;G� L
11(k=0)

=;(1&q) in this case, as is well known(10) (the first equality follows from
the fact that C L

12(r)=C L
21(r)=0).

III. ORNSTEIN�ZERNIKE APPROXIMATION AND
EXACT RELATIONS

So far, all equations are exact provided that replica symmetry is not
broken. We now introduce an OZ approximation for the direct correlation
functions. Since the interactions in the effective Hamiltonian are restricted
to nearest-neighbors, we assume that the seven distinct C 's are non-zero
only at r=0 and r=e, where e is a is a vector from the origin to one of
its nearest-neighbors. On the other hand, their dependence on m, q and ;
is not given a priori. We thus write that

Cx(r)=cx
0(m, q, ;) $r, 0+cx

1(m, q, ;) $r, e (28)

where x=aa, ab, aab, etc. The whole problem lies in the determination of
the c0's and the c1's.

When J0=J=0 (or at infinite temperature with H� and 2� fixed),
the correlation functions are local (i.e., the c1's are zero) and can be calcu-
lated by averaging directly over the disorder distribution. Hereafter, we
call this system the reference system. In terms of m and q, one finds that
Gaa

ref (r)=(1&m2) $r, 0 , Gab
ref (r)=(q&m2) $r, 0 , Ga, ab

ref (r)=m(1&q) $r, 0 ,
Ga, bc

ref (r)=(t&mq) $r, 0 , Gab, ab
ref (r)=(1&q2) $r, 0 , Gab, ac

ref (r)=q(1&q) $r, 0 ,
Gab, cd

ref (r)=(r&q2) $r, 0 , with

m=|
+�

&�
Dx tanh (H� ref+x2� 1�2

ref ) (29a)

q=|
+�

&�
Dx tanh2(H� ref+x2� 1�2

ref ) (29b)

t=|
+�

&�
Dx tanh3(H� ref+x2� 1�2

ref ) (29c)

r=|
+�

&�
Dx tanh4(H� ref+x2� 1�2

ref ) (29d)

where Dx=1�- (2?) dx exp(&x2�2). Here, Href and 2ref must be con-
sidered as auxiliary field variables that can be eliminated from Eqs. (29a)
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and (29b) to express t and r as functions of m and q, for instance as infinite
double series,

t(m, q)=3mq&2m(m2+3q2)+6mq(2m2+3q2)

&6m(m4+10m2q2+13q4)+ } } } (30a)

r(m, q)=3q2&8q3&2(m4&16q4)+24q(m4&7q4)+ } } } (30b)

The corresponding direct correlation functions are obtained from the
RSOZ equations, Eqs. (20�27) (inverting the role of G

��
and C

��
). Their

expressions are given in the Appendix.
Now, the simplest approximation for the direct correlation functions

at finite temperature is the Random Phase Approximation (RPA). It con-
sists in setting the c1's equal to &; times the corresponding interactions in
the Hamiltonian. Here, this gives

C� aa
RPA(k)=caa

0, ref (m, q, ;)&J� 0*� (k) (31)

C� ab, ab
RPA (k)=cab, ab

0, ref (m, q, ;)&J� 2*� (k) (32)

where J� 0=c;J0 , J� =c1�2;J, and *� (k)=1�c �e exp(ik } e) is the charac-
teristic function of the lattice. All other C 's remain equal to the correspond-
ing C 's of the reference system, C� ab

RPA(k)=cab
0, ref (m, q, ;), C� a, ab

RPA(k)=
ca, ab

0, ref (m, q, ;), etc.
Using Eqs. (A1) and (A2), one then finds

C� L
11, RPA(k)=(1+4q+3r) Dref&J� 0 *� (k) (33a)

C� L
22, RPA(k)=(1&q) Dref&J� 2*� (k) (33b)

C� L
12, RPA(k)=& 1

2 C� L
21, RPA(k)=(m&t) Dref (33c)

so that

�H�
�m

=(1&4q+3r) Dref&J� 0 (34a)

�2�
�q

=(1&q) Dref&J� 2 (34b)

�H�
�q

=&
1
2

�2�
�m

=(m&t) Dref (34c)
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It is straightforward to check that these results are also obtained by dif-
ferentiating the following expression of the free energy

F� �N=&
J� 2

4
(1&q)2+

J� 0
2

m2&|
+�

&�
Dx ln[2 cosh(H� +J� 0m+x(2� +J� 2q)1�2)]

(35)

where m and q are given by Eqs. (29a) and (29b) with H� ref replaced by
H� +J� 0m and 2� ref by 2� +J� 2q (the same modification must be performed, of
course, in the definitions of t and r). Equation (35) is just the replica-sym-
metric solution of the SK model in the presence of a Gaussian random
field.(18) Therefore, the RPA is equivalent to mean-field theory when the
Gibbs free energy is obtained by integration of the H- or 2-susceptibility.
(This statement is actually valid irrespective of the assumption of replica
symmetry.) In particular, the instability with respect to RSB is given by the
vanishing of

C� R
RPA(k=0)=C� R

ref[1&zRPA
R ] (36)

where

zRPA
R =(1&2q+r) J� 2 (37)

When 2=0, the condition zRPA
R =1 yields the usual AT lines.(16)

Mean field theory becomes exact when d � �. On the other hand, as
is well-known in another context (see, e.g., ref. 20), the RPA in finite
dimensions predicts pair distribution functions that do not satisfy the
proper sum rules in the ``core,'' i.e., when r=0. Here, the exact core condi-
tions are obtained by using the hard-spin condition _i=\1 and the defini-
tion of q. One finds in the replica-symmetric case

Gaa(r=0)=1&m2 (38a)

Gab(r=0)=q&m2 (38b)

Ga, ab(r=0)=m(1&q) (38c)

Gab, ab(r=0)=1&q2 (38d)

Gab, ac(r=0)=q(1&q) (38e)

It can be checked that these relations are not satisfied by the RPA. This
disease may be cured by adjusting the values of the corresponding direct
correlation functions at r=0, i.e., the values of caa

0 , cab
0 , ca, ab

0 , cab, ab
0 and

cab, ac
0 . In liquid-state theory, such an approximation is called the
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Optimized Random Phase Approximation (ORPA)(21) and is closely
related to the mean-spherical approximation. We have seen in ref. 6 in the
case of the RFIM that going from the RPA to the ORPA improves the
predictions for non-universal quantities such as the critical temperature. It
also modifies the critical behavior because of a subtle interplay between
small-r and large-r correlations.(22) On the other hand, the ORPA (like the
RPA) is not thermodynamically self-consistent as different Gibbs free
energies are obtained depending on the route that is chosen for calculating
G from the pair correlation functions. In order to get a self-consistent
theory we have also to adjust the values of the direct correlation functions
at r=e, i.e., the values of the c1's.

In the EA model, self-consistency is embodied in three Maxwell rela-
tions that can be obtained by considering the variation of G as one varies
the control variables J, m and q independently while keeping the ratio J0 �J
fixed. From Eqs. (4) and (10), one finds in the replica-symmetric n � 0
limit

�(G� �N )

�J� 2
= &

1
4 _

J� 0
J� 2

(Gaa(r=e)+m2)&(Gab, ab(r=e)+q2&1)& (39)

Then, using Eqs. (26) for the second partial derivatives of G� with
respect to m and q, one finds that the cross-derivatives satisfy

�C� L
11(k=0)

�J� 2
= &

J� 0

2J� 2&
1
4

�2

�m2 _J� 0

J� 2
Gaa(r=e)&Gab, ab(r=e)& (40a)

�C� L
12(k=0)

�J� 2
= &

1
4

�2

�m �q _
J� 0

J� 2
Gaa(r=e)&Gab, ab(r=e)& (40b)

�C� L
22(k=0)

�J� 2 = &1+
1
2

�2

�q2 _J� 0

J� 2 Gaa(r=e)&Gab, ab(r=e)& (40c)

Therefore, one has only five core conditions and three self-consistency
relations available, whereas, from the OZ approximation, Eq. (28), there
are forteen unknown functions c0's and c1's to determine. In order to solve
the problem completely, one must thus introduce additional approxima-
tions.

IV. THE CASE H=J0=0

As a first requirement, a sensible theory for the spin glass transition
should yield reasonable predictions for the freezing temperature Tf in zero
field. We thus take H=0 in the following, and, to keep things simple, we
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only consider the case J0=0. Then m=0 and the RSOZ equations,
Eqs. (16) and (17), decouple, as noted earlier. Moreover, only the correla-
tion functions depending on four replica indices are relevant, so that only
two core conditions, Eqs. (38d) and (38e), and one self-consistency rela-
tion, Eq. (40c), come into play. In order to have only three unknown state-
dependent functions to determine, we shall assume that cab, ac

1 (q, ;)=
cab, cd

1 (q, ;)=0 and cab, cd
0 (q, ;)=cab, cd

0, ref (q). According to the ORPA
philosophy, these two additional approximations seem quite natural since
only two distinct replicas interact in the Hamiltonian Hn and there is no
core condition associated to Gab, cd. Our simplified OZ approximation for
the direct correlation functions in Fourier space thus reads

C� ab, ab(k)=cab, ab
0 (q, ;)+cab, ab

1 (q, ;) *� (k)

C� ab, ac(k)=cab, ac
0 (q, ;) (41)

C� ab, cd (k)=cab, cd
0, ref (q)

Since the direct correlation functions have the same spatial structure as in
the RPA, this theory will reduce to mean field theory and become exact
when d � �.

It is now easy to calculate Gab, ab(r) and Gab, ac(r) so that one can use
the two core conditions and derive the SCOZA partial differential equation
(PDE). Introducing the auxiliary function GD(r)=Gab, ac(r)&3�2Gab, cd (r)
one first notes that

Gab, ab(r)= &2[GL
22(r)& 3

2 GR(r)+GD(r)] (42a)

Gab, ac(r)= & 3
2 [GL

22(r)&GR(r)+ 4
3GD(r)] (42b)

From Eqs. (41), one has

C� L
22(k)=C L

0, 22[1&z*� (k)] (43)

where C L
0, 22=cab, ab

0 &4cab, ac
0 +3cab, cd

0, ref and z=&cab, ab
1 �C L

0, 22 . Since the
matrices G�

��

L and C�
��

L are diagonal when m=0, one gets immediately

GL
22(r)=GL

0, 22P(r, z) (44)

where GL
0, 22=1�C L

0, 22 and P(r, z) is the lattice Green's function defined
by(23)

P(r, z)=
1

(2?)d |
?

&?
d dk

eik } r

1&z*� (k)
(45)
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Similarly, one has

C� R(k)=C R
0 [1&zR*� (k)] (46)

with C R
0 =cab, ab

0 &2cab, ac
0 +cab, cd

0, ref and zR=&cab, ab
1 �C R

0 . Hence, from
Eq. (22),

GR(r)=GR
0 P(r, zR) (47)

with GR
0 =1�C R

0 =(zR�z) GL
0, 22 . Finally, from Eq. (25), one obtains

G� D(k)=
GD

0

[1&z*� (k)]2
(48)

with GD
0 =[3cab, cd

0, ref �2&cab, ac
0 ](GL

0, 22)2=[cab, cd
0, ref +(1&z�zR)�GL

0, 22](GL
0, 22)2�2.

Hence,

GD(r)=GD
0

�
�z

[zP(r, z)] (49)

The core conditions, Eqs. (38d) and (38e), can be used to express GL
0, 22 and

GD
0 in terms of z and zR . One finds

GL
0, 22=

2z(1&q)
3zR P(zR)&zP(z)

(50)

and

GD
0 =

1
2

1&q
zP$(z)+P(z) _1&q&2z

P(z)
3zRP(zR)&zP(z)& (51)

where P(z)#P(r=0, z) and P$(z)=(d�dz) P(z). Moreover, z and zR are
related via

(1&q)[3zRP(zR)&zP(z)]2

=2z[3zR P(zR)&zP(z)] _P(z)+\1&
z

zR +
d
dz

(zP(z))&
+4z2(1&q)

d
dz

(zP(z)) cab, cd
0, ref (q) (52)

The self-consistency relation, Eq. (40c), can now be expressed as a PDE in
the unknown function z(q, *), where *#J� 2=c;2J2. One obtains

�C� L
22(k=0)

�*
=&1&

1
2

�2

�q2 Gab, ab(r=e) (53)
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with

C� L
22(k=0)=

3zRP(zR)&zP(z)
2z(1&q)

(1&z) (54)

and

Gab, ab(r=e)=(1&q) {2
3P(zR)&2P(z)&1
3zRP(zR)&zP(z)

&_1&q&2z
P(z)

3zR P(zR)&zP(z)&
P$(z)

zP$(z)+P(z)= (55)

where we have used that P(r=e, z)=[P(z)&1]�z.
Given the appropriate boundary conditions, the set of Eqs. (52)�(55)

allows to calculate z and zR and thus the correlation functions and the
Gibbs free energy for all values of q and *. However, from the definition
of the Green's function, Eq. (45), one must have 0�z�1 and 0�zR�1.
In particular, z=zR=0 corresponds to the high-field (2 � �, q � 1) or
high-temperature (* � 0) limit, while z=1 and zR=1 define respectively
the spinodal line C� L

22(k=0)=0 and the limit of stability of the replica-sym-
metric solution in the q&* plane. At the freezing temperature Tf when
2=0, one has simultaneously z(q=0)=zR(q=0)=1. Indeed, cab, cd

0, ref (q=0)
=0, so that z=zR is always solution of Eq. (52) when q=0 (this is not the
only solution, but the only one that is physically acceptable). Accordingly,
GR

0 (q=0)=GL
0, 22(q=0) so that cab, cd

0 (q=0)=0, as required by symmetry
(cf. the end of Section 2). Another exact requirement is that 2(q=0)=0
for every * in the high-temperature phase. Since 2ref (q=0)=0 and
�2��*=&q&(1�2) �Gab, ab(r=e)��q (the integrated form of Eq. (53)), this
implies that

�
�q

Gab, ab(r=e) }q=0

=0 (56)

in the high-temperature phase. We take this equation as the boundary con-
dition for the PDE, Eq. (53), on the line q=0.

This suggests to take Gab, ab(r=e) as the unknown function in the
numerical integration of Eq. (53). The PDE is then rewritten as a non-
linear diffusion equation,

�G
�*

=&
�G��z |q

�C��z | q \1+
1
2

�2G
�q2 + (57)
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where C#C� L
22(k=0) and G#Gab, ab(r=e). The integration is carried out

by a simple explicit algorithm in which the ``space-like'' variable q and the
``time-like'' variable * are discretized, and the partial derivatives are
approximated by finite difference representations.(24) The first derivative
with respect to * is used to update G at the temperature step n+1 by
evaluating the second derivative with respect to q at the step n. For given
values of q and G, z and zR are obtained from Eqs. (52) and (55) by using
a standard Newton�Raphson algorithm (note that these equations do not
depend explicitly on * and that cab, cd

0, ref (q) can be tabulated once and for all).
C� L

22(k=0) is then obtained from Eqs. (54). Although an implicit method,
such as the one used in ref. 3, would have the advantage of being uncondi-
tionally stable, we have achieved numerical stability above and at Tf by
using small grid spacings, 2q=5.10&3 and 2*=10&5.

V. RESULTS AND DISCUSSION

As one decreases the temperature (i.e., increases *) in the numerical
integration of the PDE, there is a value of * for which z(q=0)=zR(q=0)
=1. This corresponds to the divergence of the spin glass susceptibility, and
it defines the freezing temperature Tf . The SCOZA results for Tf are com-
pared in Table 1 with the predictions of a 1�d series expansion(25) for
d=9, 7, 5 and with recent Monte Carlo estimates for d=4(26) and d=3. (27)

One notes a significant improvement over the predictions of mean-field
theory (T mf

f =- 2 d ). In fact, the results are comparable to those of the
Bethe�Peierls approximation(28) for d�5 and better for d=4 and 3. Note
again that the present theory is exact in the replica symmetric high-tem-
perature phase when d � � and thus predicts the correct Tf in this limit.
It is likely that the small deviations for d=9 and 7 come from the fact that
only Cab, ab(q, ;) is nonzero in the simplified OZ approximation, Eq. (41).
Indeed, the exact calculation of Cab, ab(r), Cab, ac(r) and Cab, cd (r) to order
1�d shows that the three functions do extend to nearest-neighbor separa-
tion.(29) But the introduction of cab, ac

1 and cab, cd
1 would require self-con-

sistency relations involving the three direct correlation functions separately.
This is only possible if one breaks replica symmetry in some way. Below
the upper critical dimension d=6, the fact that ' is no longer zero comes
also into play and may explain the more significant deviations from the
simulation results observed for d=3 ('& &0.5 according to ref. 17).

When J0=0, the zero-field internal energy per spin is given by ;u=
&(*�2)[1&Gab, ab(r=e)]. Therefore, at the freezing temperature, Eq. (55)
readily gives uf �J=&cJ�(2P(1) kBTf). The corresponding numerical values
are also given in Table 1. As an illustration of the behavior of the specific
heat above Tf , we plot C(T )=�u��T for d=5, 4 and 3 in Fig. 1. Note the
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Table 1. Freezing Temperature and Internal Energy per Spin at Tf of the
d-Dimensional EA Spin Glass Model with Gaussian Couplings and J0=0a

d kBT scoza
f �J kBT be

f �J uscoza
f �J

9 3.91 3.82a &2.16
7 3.35 3.22a &1.91
5 2.66 2.41a &1.63
4 2.21 1.80\0.01b &1.46
3 1.58 0.95\0.04c &1.25

a The SCOZA results for T f are compared with the best series or simulation estimates. (a)
ref. 25. (b) ref. 26. (c) ref. 27. For d=9, 7, and 5, T f is obtained from the 1�d series estimates
of the freezing temperature for the \J distribution using the transformation formula given
in ref. 25.

broad maximum that appears above the freezing temperature for d=3, in
agreement with experimental and simulation data.(10) This is in contrast
with the mean-field behavior that predicts a cusp at Tf .

Finally, from the solution of the SCOZA equations one can derive
all correlation functions, even in the presence of a random field (2{0).
When q=2=0, the correlations are described by the single function

Fig. 1. SCOZA predictions for the specific heat of the EA Gaussian spin glass model with
J0=0 in the paramagnetic phase.
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Fig. 2. SCOZA predictions for the correlation length ! of the EA Gaussian spin glass model
with J0=0 in the paramagnetic phase for d=3, 4, 5 and �.

Gab, ab(r)=[(_0 _r) 2]av , which here is simply proportional to the lattice
Greens function P(r, z). The associated correlation length can be defined
from the second moment of G� ab, ab(k): specifically, one has 2d!2=z�(1&z).
We show in Fig. 2 the variation of ! with T�Tf as a function of dimen-
sionality. Unfortunately, we have not found any available data to compare
with.

In summary, the SCOZA results for the properties of the Edwards�
Anderson spin glass model at and above the freezing temperature as a
function of dimensionality are in reasonable agreement with the known
estimates. This represents an encouraging step for proceeding further in
studying the stability of the replica-symmetric solution at temperatures
below Tf . It is much more difficult to obtain a reliable solution of the
SCOZA PDE in this region, and work in this direction is still in progress.

APPENDIX A. DIRECT CORRELATION FUNCTIONS IN THE
REFERENCE SYSTEM

From the expressions of the G's in the reference system and Eqs. (18)
and (24), one finds
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C� L
11, ref=(1&4q+3r) Dref (A1a)

C� L
22, ref=(1&q) Dref (A1b)

C� L
12, ref=& 1

2C�
L
21, ref=(m&t) Dref (A1c)

where

Dref =C� L
11, refC�

L
22, ref+2(C� L

12, ref)
2

=[(1&q)(1&4q+3r)+2(m&t)2]&1 (A2)

and r ant t are given in Eqs. (29). Moreover, Eq. (25) yields

\ cab
0, ref

2ca, bc
0, ref&ca, ab

0, ref

& 1
2c

a, bc
0, ref

cab, ac
ref & 3

2c
ab, cd
0, ref +

=D2
ref \1&4q+3r

&2(m&t)
m&t
1&q+

} \ m2&q
m(1+q)&2t

1
2(t&mq)

&q+ 1
2(3r&q2)+ } \1&4q+3r

&2(m&t)
m&t
1&q+ (A3)

Finally, Eq. (22) for the replicon sector gives

C� R
ref=

1
1&2q+r

(A4)

It is now straightforward to calculate all the Cref 's from these equations.
The results are

caa
0, ref=D2

ref [(1&4q+3r)2(1+m2&2q)+2(m&t)(1&4q+3r)(2m+mq&3t)

+(m&t)2(6q+q2&6r&1)] (A5)

cab
0, ref=caa

0, ref&(1&4q+3r) Dref (A6)

ca, bc
0, ref=2 {(1+4q+3r) _(m(q&m2)(1&q)&

1
2

(t&mq)(1+q&2m2)&
+(1&q)(m&t) \q+

q2

2
&

3r
2 ++(m&t)2(2t&m&mq)= D2

ref (A7)

ca, ab
0, ref=ca, bc

0, ref+(t&m) Dref (A8)
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cab, cd
0, ref =2 {(1&q)2 \q+

q2

2
&

3r
2 +

+(m&t)2(1+2m2&3q)+2(1&q)(m&t)(2t&m&mq)= D2
ref

+2
(1&q)(r&q)+(m&t)2

1&2q+r
Dref (A9)

cab, ac
0, ref =cab, cd

0, ref +
(1&q)(r&q)+(m&t)2

1&2q+r
Dref (A.10)

cab, ab
0, ref =2cab, ac

0, ref &cab, cd
0, ref +

1
1&2q+r

(A11)
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